3,341 research outputs found

    Orthogonality of Biphoton Polarization States

    Full text link
    Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is demonstrated experimentally, in a generalization of the well-known anti-correlation 'dip' experiment.Comment: Submitted to Phys.Rev.Let

    Photon splitting in atomic fields

    Full text link
    Photon splitting due to vacuum polarization in the electric field of an atom is considered. We survey different theoretical approaches to the description of this nonlinear QED process and several attempts of its experimental observation. We present the results of the lowest-order perturbation theory as well as those obtained within the quasiclassical approximation being exact in the external field strength. The experiment where photon splitting was really observed for the first time is discussed in details. The results of this experiment are compared with recent theoretical estimations.Comment: 45 pages, 24 figure

    Qutrit state engineering with biphotons

    Full text link
    The novel experimental realization of three-level optical quantum systems is presented. We use the polarization state of biphotons to generate a specific sequence of states that are used in the extended version of BB84 protocol. We experimentally verify the orthogonality of the basis states and demonstrate the ability to easily switch between them. The tomography procedure is employed to reconstruct the density matrices of generated states.Comment: 5 pages, 4 figures. typos correcte

    Non-Linear Static and Modal Analysis of Three Types of Cable-Stayed Bridges

    Get PDF
    This paper is concerned about the study of cable-stayed bridges having three spans with double plane of cables. Three common types of bridge arrangement are considered - harp, fan and radiating shapes. The influence of the arrangements of cables on the bridge deformation is examined. The relationship between the sag and the other parameters of cables for each type is presented. In the static analysis, the energy method, based on the minimization of the total potential energy of structural elements, via conjugate gradient technique is used. A computer program in FORTRAN language is used in the analysis of bridge model. Natural frequencies for the considered types of cable-stayed bridge are calculated, using the SAP2000 program. Keywords: Non-linear static analysis, cable structures, cable stayed bridges, minimization of potential energy, conjugate gradient method

    Statistical Channel Model for 60 GHz WLAN Systems in Conference Room Environment

    Get PDF
    In this work, a methodology of statistical channel modeling for 60 GHz WLAN systems is proposed and a channel model for the office conference room environment is developed. The proposed methodology takes into account the most important properties of the indoor 60 GHz propagation channel such as large propagation loss and necessity to use steerable directional antennas by the WLAN stations, quasi-optical propagation nature, clustering structure of the channel, and significant impact of the polarization characteristics. A general mathematical structure of the channel model that supports all the described 60 GHz propagation channel properties is suggested. Then the conference room scenario for 60 GHz WLAN systems is introduced. Development of the inter cluster, intra cluster, and polarization impact modeling parameters is considered in details first explaining the used methodology for each channel modeling aspect and then followed by its application to the conference room scenario. The raw data for the channel model development include the experimental results [1], [2] and ray-tracing simulations for the conference room scenario. The proposed channel modeling methodology and the developed conference room channel model were adopted by the IEEE 802.11ad committee for 60 GHz WLAN systems standardization

    Entanglement criterion for pure MNM\otimes N bipartite quantum states

    Full text link
    We propose a entanglement measure for pure MNM \otimes N bipartite quantum states. We obtain the measure by generalizing the equivalent measure for a 222 \otimes 2 system, via a 232 \otimes 3 system, to the general bipartite case. The measure emphasizes the role Bell states have, both for forming the measure, and for experimentally measuring the entanglement. The form of the measure is similar to generalized concurrence. In the case of 232 \otimes 3 systems, we prove that our measure, that is directly measurable, equals the concurrence. It is also shown that in order to measure the entanglement, it is sufficient to measure the projections of the state onto a maximum of M(M1)N(N1)/2M(M-1)N(N-1)/2 Bell states.Comment: 6 page

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    Measurement of qutrits

    Full text link
    We proposed the procedure of measuring the unknown state of the three-level system - the qutrit, which was realized as the arbitrary polarization state of the single-mode biphoton field. This procedure is accomplished for the set of the pure states of qutrits; this set is defined by the properties of SU(2) transformations, that are done by the polarization transformers.Comment: 9 pages, 9 figure
    corecore